Промежуточная аттестация по физике 8 класс

Инструкция по выполнению работы

На выполнение экзаменационной работы по физике отводится 45 минут. Экзаменационная работа включает в себя 11 заданий. Ответы к заданиям 1, 2, 7, 8 записываются в виде последовательности цифр. Ответом к заданиям 3, 4 является одна цифра, которая соответствует номеру правильного ответа. Ответы к заданиям 5, 6 записываются в виде целого числа или конечной десятичной дроби с учётом указанных в ответе единиц. Ответ запишите в поле ответа в тексте работы, а затем перенесите в бланк ответов \mathbb{N} 1. Единицы измерения в ответе указывать не надо.

К заданиям 9-11 следует дать развёрнутый ответ. Задания выполняются на бланке ответов № 2. Запишите сначала номер задания, а затем ответ на него. Ответы записывайте чётко и разборчиво.

При вычислениях разрешается использовать линейку и непрограммируемый калькулятор.

Все бланки заполняются яркими чёрными чернилами. Допускается использование гелиевой или капиллярной ручки.

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

После завершения работы проверьте, чтобы ответ на каждое задание в бланках ответов \mathbb{N}_2 1 и \mathbb{N}_2 2 был записан под правильным номером.

Желаем успеха!

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

Десятичные приставки		
Наименование	Обозначение	Множитель
гига	Γ	10 9
мега	M	10 ⁶
кило	K	10 ³
гекто	Г	10 2
санти	c	10-2
милли	М	10 ⁻³
микро	MK	10-6
нано	н	10-9

Константы		
ускорение свободного падения на Земле	$g = 10 \frac{M}{c^2}$	
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \frac{\text{H} \cdot \text{m}^2}{\text{kr}^2}$	
скорость света в вакууме	$c = 3.10^8 \frac{\mathrm{M}}{\mathrm{c}}$	
элементарный электрический заряд	$e = 1,6 \cdot 10^{-19} \text{ Кл}$	

Плотность			
бензин	$710 \frac{\kappa \Gamma}{M^3}$	древесина (сосна)	$400 \frac{\mathrm{KT}}{\mathrm{M}^3}$
спирт	$800 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	парафин	$900 \frac{\text{K}\Gamma}{\text{M}^3}$
керосин	$800 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	лёд	$900 \frac{\mathrm{KT}}{\mathrm{M}^3}$
масло машинное	$900 \frac{\mathrm{Kr}}{\mathrm{M}^3}$	алюминий	$2700 \frac{\text{Kr}}{\text{M}^3}$
вода	$1000 \frac{K\Gamma}{M^3}$	мрамор	$2700 \frac{\text{Kr}}{\text{M}^3}$
молоко цельное	$1030 \frac{K\Gamma}{M^3}$	цинк	$7100 \frac{\kappa \Gamma}{M^3}$
вода морская	$1030 \frac{K\Gamma}{M^3}$	сталь, железо	$7800 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
глицерин	$1260 \frac{\text{KF}}{\text{M}^3}$	медь	8900 $\frac{\text{KT}}{\text{M}^3}$
ртуть	$13\ 600\ \frac{\text{K}\Gamma}{\text{M}^3}$	свинец	11 350 <mark>кг</mark> м ³

Удельная			
теплоёмкость воды	4200 <u>Дж</u> кг∙°С	теплота парообразования воды	2,3·10 ⁶ Дж кг
теплоёмкость	2400 Дж	теплота парообразования	9,0·10 ⁵ Дж
спирта	кг∙°С	спирта	кг
теплоёмкость льда	2100 Дж	теплота	2,5·10 ⁴ Дж
	кг·°С	плавления свинца	кг
теплоёмкость	920 Дж	теплота плавления	7,8·10 ⁴ Дж
алюминия	кг·°С	стали	кг
теплоёмкость стали	500 Дж	теплота плавления	5,9·10 ⁴ Дж
	кг∙°С	олова	кг
теплоёмкость цинка	400 Дж кг⋅°С	теплота плавления льда	3,3·10 ⁵ Дж кг
теплоёмкость меди	400 Дж	теплота сгорания	2,9·10 ⁷ Дж
	кг⋅°С	спирта	кг
теплоёмкость олова	230 Дж	теплота сгорания	4,6·10 ⁷ Дж
	кг·°С	керосина	кг
теплоёмкость	130 Дж	теплота сгорания	4,6·10 ⁷ Дж
свинца	кг⋅°С	бензина	кг
теплоёмкость бронзы	420 Дж кг·°С		

Температура плавления		Температу	ра кипения
свинца	327 °C	воды	100 °C
олова	232 °C	спирта	78 °C
льда	0 °C		

Удельное электрическое сопротивление, $\frac{{ m O}_{ m M} \cdot { m MM}^2}{{ m M}}$ (при 20 °C)			
серебро	0,016	никелин	0,4
медь	0,017	нихром (сплав)	1,1
алюминий	0,028	фехраль	1,2
железо	0,10		

Нормальные условия: давление 10⁵ Па, температура 0 °C

Ответом к заданиям 1, 2, 7, 8 является последовательность цифр. Последовательность цифр записывайте без пробелов, запятых и других дополнительных символов. Ответом к заданиям 3, 4 является одна цифра, которая соответствует номеру правильного ответа. Ответом к заданиям 5, 6 является число. Единицы измерения в ответе указывать не надо. Ответ запишите в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Ответы на задания 9-11 запишите на БЛАНКЕ ОТВЕТОВ № 2

1. Установите соответствие между физическими величинами и единицами этих величин в системе СИ: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.

второго столоци.	
ФИЗИЧЕСКИЕ ПОНЯТИЯ	ПРИМЕРЫ
А) количество теплоты	1) ватт (Вт)
Б) удельная	2) джоуль (Дж)
теплоемкость	2) джоуль (дж)
В) удельное	3) Дж/кг. ⁰ С
сопротивление	3) Дж/кі - С
	4) Ом∙м
	5) ом (Ом)

Ответы запишите в таблицу:

A	Б	В

2 Установите соответствие между техническими устройствами и физическими явлениями, лежащими в основе их работы. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

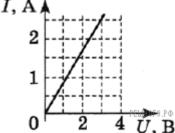
ТЕХНИЧЕСКИЕ УСТРОЙСТВА	ФИЗИЧЕСКИЕ ЯВЛЕНИЯ
А) электропаяльник	1) электромагнитная индукция
Б) индукционная плита	2) действие магнитного поля на проводник с током
	3) тепловое действие тока
	4) взаимодействие постоянных магнитов

Ответы запишите в таблицу:

OIDCIDI	Julilimili C D	
A	Б]

- 3 Два одинаковых термометра поместили в футляры, сделанные из одинакового материала и имеющие одинаковые размеры. Один из футляров снаружи был выкрашен белой краской, второй черной краской. Оба футляра выставили под прямые солнечные лучи. Термометр, находящийся в белом футляре, покажет
- 1) более высокую температуру, чем термометр в черном футляре
- 2) такую же температуру, как и термометр в черном футляре
- 3) более низкую температуру, чем термометр в черном футляре
- 4) температуру воздуха снаружи, а термометр, находящийся в черном футляре, покажет температуру воздуха внутри футляра
- 4 К незаряженному электрометру поднесли положительно заряженную палочку. Какой заряд приобретет шар и стрелка электрометра?
- 1) Шар и стрелка будут заряжены отрицательно.
- 2) Шар и стрелка будут заряжены положительно.

- 3) На шаре будет избыточный положительный заряд, на стрелке избыточный отрицательный заряд.
- 4) На шаре будет избыточный отрицательный заряд, на стрелке избыточный


положительный заряд

5 Стальная деталь при охлаждении на 200 °C отдает количество теплоты, равное 1 МДж. Чему равна ее масса? Ответ запишите в килограммах.

Ответ:_____ кі

6 На рисунке представлен график зависимости силы тока I, протекающего через резистор, от напряжения U на концах резистора. Чему равно сопротивление резистора? Ответ запишите в омах.

Ответ:

7 На рисунке представлен график зависимости температуры t от времени т при равномерном нагревании и последующем равномерном охлаждении вещества, первоначально находящегося в твердом состоянии.

Используя данные графика, выберите из предложенного перечня два верных утверждения. Укажите их номера.

- 1) Участок БВ графика соответствует процессу кипения вещества.
- 2) Участок ГД графика соответствует кристаллизации вещества.
- 3) В процессе перехода вещества из состояния, соответствующего точке Б, в состояние, соответствующее точке В, внутренняя энергия вещества увеличивается.
- 4) В состоянии, соответствующем точке Е на графике, вещество находится частично в жидком, частично в твердом состоянии.
- 5) В состоянии, соответствующем точке Ж на графике, вещество находится в жидком состоянии.
- 8 Кипятильник сопротивлением R_1 был подключен к источнику постоянного напряжения. Затем этот кипятильник заменили на второй, сопротивление которого R_2 в два раза меньше,

чем сопротивление первого кипятильника. Как при этом изменяются сила тока и количество тепла, выделяемое за единицу времени вторым кипятильником, по сравнению с первым? Для каждой величины определите соответствующий характер изменения:

- 1) увеличилась
- 2) уменьшилась
- 3) не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться

Сила тока, текущего через	Количество тепла, выделяемое за единицу
второй кипятильник	времени вторым кипятильником

- 9 Почему в качестве утеплителей зданий используют вспененные пластмассы, большую часть объема которых занимает воздух? Ответ поясните.
- 10 Конец магнитной стрелки притянулся к одному из концов стального стержня. Можно ли сделать вывод о том, что изначально стержень был намагничен? Ответ поясните.
- 11 Три резистора, сопротивления которых: $R_1 = 3 \, \text{Om}$; $R_2 = 6 \, \text{Om}$ и $R_3 = 9 \, \text{Om}$, соединены последовательно. Вольтметр, подключенный параллельно второму резистору, показывает напряжение 12 В. Чему равно напряжение (в В) на всем участке цепи? Вольтметр считать идеальным.